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Analysis of Cantor’s Continuum Hypothesis

A. Nudelman

Abstract
In this paper, the entire infinite set of positive rational numbers is presented. This set is corresponded
with the infinite set of all natural numbers, divided into groups; these groups consist of the same
number of natural numbers. Initially, the infinite set of rational numbers is linearly ordered in two
mutually perpendicular directions. In this paper, a radically new approach to the continuum hypothesis
is developed (taking into account the conclusions of K. Gödel and P. Cohen). The main content of this
work is concentrated in six tables. The author’s main argumentation is presented in tables 5 and 6, as
well as in Section 4.

1. Introduction
1.1.1 We believe that it is most appropriate to give the following quotation as an introduction to this
work.
Paul J. Cohen. “Set Theory and The Continuum Hypothesis”, 1966 [1] (a monograph by Paul. J.
Cohen, Chapter III, p. 85)

“Our goal is to present Gödel’s proof that if ZF is consistent then it remains consistent if the
Generalized Continuum Hypothesis (GCH) and AC are added. The Continuum Hypothesis (CH)
was first stated by Cantor in 1878. It was listed by Hilbert first in his list of unsolved problems
given in his famous address of 1900. Despite many attempts the problem remained unsolved.”

1.1.2 It is necessary to point out Kurt Gödel’s attempt to prove Cantor’s continuum hypothesis. In
his proof published in 1940 [2], Gödel concluded that in the axiom system ZFC (the axiom system of
the Zermelo-Fraenkel theory with the axiom of choice) the continuum hypothesis cannot be disproved.
Cohen proved in 1963 that in the ZFC axiom system, Cantor’s continuum hypothesis can neither be
disproved nor proved.

2. Approach of Cantor
2.1.1 Let us present one more quote — Cantor’s letter to Dedekind dated November 29, 1873 (see [3],
p. 12–13).

“Gestatten Sie mir, Ihnen eine Frage vorzulegen, die für mich ein gewisses theoretisches Interesse
hat, die ich mir aber nicht beantworten kann; vielleicht können Sie es, und sind so gut, mir
darüber zu schreiben, es handelt sich um folgendes.
�Man nehme den Inbegriff aller positiven ganzzahligen Individuen 𝑛 und bezeichne ihn mit (𝑛);
ferner denke man sich etwa den Inbegriff aller positiven reellen Zahlgrößen 𝑥 und bezeichne
ihn mit (𝑥); so ist die Frage einfach die, ob sich (𝑛) dem (𝑥) so zuordnen lasse, dass zu jedem
Individuum des einen Inbegriffes ein und nur eines des andern gehört? Auf den ersten Anblick
sagt man sich, nein es ist nicht möglich, denn (𝑛) besteht aus diskreten Teilen, (𝑥) aber bildet
ein Kontinuum; nur ist mit diesem Einwande aber nichts gewonnen und so sehr ich mich auch zu
der Ansicht neige, dass (𝑛) und (𝑥) keine eindeutige Zuordnung gestatten, so kann ich doch den
Grund nicht finden und um den ist es mir zu tun, vielleicht ist es ein sehr einfacher.
Wäre man nicht auch auf den ersten Anblick geneigt zu behaupten, dass sich (𝑛) nicht eindeutig
zuordnen lasse dem Inbegriffe (𝑝𝑞 ) aller positiven rationalen Zahlen 𝑝

𝑞 ? Und dennoch ist es nicht
schwer zu zeigen, dass sich (𝑛) nicht nur diesem Inbegriffe, sondern noch dem allgemeineren

(𝑎𝑛1,𝑛2,...,𝑛𝜈 )

eindeutig zuordnen lässt, wo 𝑛1, 𝑛2, . . . , 𝑛𝜈 unbeschränkte positive ganzzahlige Indizes in beliebiger
Zahl 𝜈 sind.”

Let us translate:

“Allow me to put a question to you that has a certain theoretical interest for me, but which I
cannot answer; maybe you can, and are good enough to write to me about it, it’s about the
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following.
Let us take the totality [Inbegriff] of all positive integer individuals 𝑛 and denote it by (𝑛); Next,
we consider the totality of all positive real numbers 𝑥 and denote it with (𝑥); so the question is
simply whether (𝑛) can be assigned to (𝑥) in such a way that each individual of the one totality
has one and only one of the other? At first sight one says to oneself, no it is not possible, because
(𝑛) consists of discrete parts, but (𝑥) forms a continuum; but nothing is gained with this objection
and no matter how much I incline to the opinion that (𝑛) and (𝑥) do not allow a one-to-one
correlation, I still cannot find the reason and that is what I am concerned with, maybe it’s a
very simple one.
Wouldn’t one be inclined to claim at first sight that (𝑛) cannot be uniquely assigned to the totality
(𝑝𝑞 ) of all positive rational numbers 𝑝

𝑞? And yet it is not difficult to show that (𝑛) belong not only
to this totality, but also to the more general one

(𝑎𝑛1,𝑛2,...,𝑛𝜈 )

can be uniquely assigned, where 𝑛1, 𝑛2, . . . , 𝑛𝜈 are unbounded positive integer indices in any
number 𝜈.”

(We added italics to this quote — in the last part of the text.)
2.1.2 This letter shows the following.

1. Cantor, back in 1873, was looking for an answer to the question of the countability (or uncount-
ability) of “the set of all real positive numerical quantities”, i.e. continuum of real positive
numbers.

2. As is well known, Cantor began research in the field of set theory in 1872. And already by
November 1873 he proved (as he was sure) that it is possible to correspond “the totality of
all positive individuals 𝑛” [i.e. the set of all natural numbers] with “the totality (𝑝𝑞 ) of all
positive rational numbers 𝑝

𝑞 ” so, “that each individual [number ] of the one totality has one and
only one [number ] of the other”.
(We added the words in square brackets to the text of the quotation)

3. It follows from this: Cantor was sure that he could prove that the set of all rational
numbers is a countable set.

4. This subsequently led Cantor to the continuum hypothesis, i.e. to the conclusion that between
the set of all natural numbers and the set (continuum) of all real numbers there is no
uncountable infinite number set.

2.2.1 Let us examine the ordered set of all positive rational numbers. We present Table 1 (see
Appendix), in which each letter denotes a rational number, for example: 𝑎1,1 , 𝑎1,2 , 𝑎1,3 , 𝑎1,4 , . . . ; while
the first index (in this example — 1, 1, 1, 1, . . . ) corresponds to the numerator of a certain fraction, and
the second index (1, 2, 3, 4, . . . ) corresponds to the denominator of the same fraction. (Table 1 — unlike
all other tables in this paper, is nominal, abstract.)
2.2.2 By using natural numbers let us count rational numbers (the sequence of counting rational
numbers is indicated in the table by arrows). According to Cantor, we can count in this
way — moving along the arrows — all rational numbers that make up the infinite set under study.
2.2.3 Let us move on to Table 2 (see Appendix). When constructing this table, the following restriction
is introduced: it contains only such rational numbers, the numerator and denominator of which is one
of the following numbers: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
2.2.4 Table 2 is a certain specific example. It relates to what is stated above in §2.2.1 and §2.2.2.

We state: by moving along the arrows, — from number to number — we can count using natural
numbers all the rational numbers given in Table 2 (in square brackets, under each rational number, the
natural number corresponding to it — according to the account — is indicated).

3. The set of all rational numbers
3.1.1 Let us once again count all positive rational numbers. At the same time, according to
Cantor’s approach (as expressed in the quote given in Section 2, §2.1.1), we must correspond all
positive integers (i.e. natural numbers) with all positive rational numbers so that each integer
(natural) number number uniquely matches to one and only one rational number.
3.1.2 Let us study the set of all positive rational numbers, linearly ordered in two mutually
perpendicular directions. A certain fragment of the specified ordered infinite set is given in Tables 3
and 4 (see Appendix).
3.1.3 As Tables 3 and 4 show, one direction of the linear ordering of rational numbers (“horizontally”)
is associated with the denominator of the fraction, and the second (“vertical”) is associated with the
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numerator of the fraction: “vertically” the numbers increase, and “horizontally” they are decreasing.
These tables also include those rational numbers that have already been discussed earlier — based on
Table 2.
3.1.4 When constructing Tables 3 and 4, a condition similar to the condition (restriction) that is
introduced when constructing Table 2 is adopted — only such rational numbers are presented whose nu-
merator and denominator can be written as one of the following numbers: 1, 2, 3, 4, . . . 17, 18, 19, 20.
At the top of Tables 3 and 4 are natural numbers.
3.2.1 Let us examine natural numbers. Let us transform the linearly ordered set of all natural
numbers: we divide this infinite set — starting from 1 and continuing to ∞— into identical finite
groups of numbers.
3.2.2 Let there be 10 numbers in each group. Consequently, a linearly ordered set of all natural
numbers can be represented as follows: 1st group, 2nd group, 3rd group, 4th group,…
3.2.3 Let us introduce Table 5 (see appendix). Table 5 — generally — displays the entire ordered set
of all positive rational numbers (this generalized table also includes repeating rational numbers;
these numbers are not marked).
3.2.4 Table 5 presents 900 rational numbers (these numbers are ordered as indicated in §3.1.3
when describing Tables 3 and 4):

• in the “part A” of 100 numbers, 37 numbers are repeating;
• in “part B” of 300 numbers, 108 numbers are repeating;
• in the “part C” of 500 numbers, 200 numbers are repeating

(respectively, 63 numbers, 192 numbers and 300 numbers are not repeating).
3.3.1 We state.

1. Parts of Table 5 (A, B, C) differ from each other by 200 numbers.
2. “Part B” and “part C” are shaped like “right angles”.

3.3.2 Table 5 can be continued unlimitedly:

• first construct the “part D” (in the shape of a “right angle”), which will have 700 numbers; 276
of them are repeating (and, accordingly, 424 are non-repeating, additional numbers);

• then construct the “part E” (of the same shape) which will have 900 numbers; 332 of them are
repeating (and, accordingly, 568 are not repeating, additional numbers);
and so on.

3.3.3 Let us move on to Table 6. This table shows the “group 93” (the group of natural numbers
from 921 to 930) and the part of the infinite set of all positive rational numbers corresponding
to the “group 93”.
3.3.4 Above, in §3.3.2, it is indicated that Table 5 can be continued unlimitedly. The portion of
the infinite set of positive rational numbers presented in Table 6 is an example (arbitrarily chosen) of a
continuation of Table 5.
3.4.1 For each of the parts (A, B, C) of Table 5 described in §3.2.4, one or another group of 10 natural
numbers is indicated: group 1, group 2 and group 3.
3.4.2 From this table it clearly follows that it is impossible — impossible in principle — to match
the two infinite sets under study so that one natural number would correspond to one (and only one)
rational number, two natural numbers would correspond to two (and only two) rational numbers, three
natural numbers would correspond to numbers would correspond to three (and only three) rational
numbers…(see what is stated in §2.1.1 and §3.1.1).

4. Conclusions
Part I
4.1.1 As is well known, Cantor counted rational numbers moving along the lines indicated in Tables 1,
2, 3, 4. Such counting leads to a logical error: it creates the confidence that — sequentially moving
from one rational number to another (see Table 4) — we can count (enumerate) all the numbers
that make up the infinite set of positive rational numbers.
4.1.2 Relatively recently, at the end of the 20th century, N. Galkin and G. Wilf proposed another way
to count positive rational numbers [4] that make up this infinite set. This method of counting also
leads to the above logical error.
4.2.1 The infinite sets of rational and natural numbers must be represented so that they are directly
(“straight”) corresponded with one another.

3



4.2.2 This problem was solved by constructing a special table — Table 5, which can be continued
unlimitedly (see §3.3.4). Let us examine the first part of the table — Part A; Table 5 shows:

• to count (enumerate) all rational numbers of part A, natural numbers from 1 to 41 were
taken (see Table 3), however, only natural numbers 1, 2, 3, . . . 8, 9, 10 can be used;

• natural numbers 11, 12, 13, . . . 18, 19, 20 cannot be used in part A, because they are necessary to
count (enumerate) all the numbers in part B;

• you also cannot use the natural numbers 21, 22, 23, . . . 28, 29, 30, because they are needed to count
(enumerate) all the numbers in Part C;

• Natural numbers 31, 32, 33, . . . 38, 39, 40, cannot be used in part A since they are necessary to
count (enumerate) all the numbers in part D;
and so on.

4.2.3 This means that the 63 rational numbers of part A should be counted using the 10 natural
numbers of group 1 — counted so that one natural number corresponds to one (and only one) rational
number, two natural numbers correspond to two (and only two) rational numbers, and so on.
4.2.4 Further similar.

Part B: required to count 192 rational numbers using only 10 natural numbers of group 2.
Part C: required to count 300 rational numbers using only 10 natural numbers of group 3.
Part D: required to count 424 rational numbers using only 10 natural numbers of group 4.
And so on.

4.2.5 We state (conclusion):

the set of all positive rational numbers is an uncountable set.

Part II
4.3.1 Let us present the second proof of the conclusion stated above.
4.3.2 Let us point out the following:

• the approach proposed by Cantor allows us to sequentially count — one after another — rational
numbers (see tables 1, 2, 3, 4);

• but Cantor faced a different, entirely different, task — to count (enumerate) all rational
numbers.

4.4.1 Let us examine table 5 once again. It is constructed as follows:
1, 2, 3, 4, . . . 11, 12, 13, 14, . . . 21, 22, 23, 24, . . .

1/1, 1/2, 1/3, 1/4, . . . 1/11, 1/12, 1/13, 1/14, . . . 1/21, 1/22, 1/23, 1/24, . . .

Here:

The top row — is the sequence of all natural numbers (the natural numbers are written above the
table) — this is the entire infinite set of natural numbers.

The bottom row — is the first row in the table of all (positive) rational numbers; this row is a small
part of the mentioned infinite set.
4.4.2 Let us establish a one-to-one correspondence between the corresponding elements of the two
rows:

1 and 1/1, 2 and 1/2, 3 and 1/3, 4 and 1/4, …and so on.

From such a correspondence, it follows that to count (enumerate) all rational numbers that are in the
first (infinite) row of table 5, we must use (“spend”) the entire infinite set of natural numbers. But
then, what will we use to count (enumerate) all the remaining rational numbers?!
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